Удачная рыбалка для всех!

Навигаторы и навигационные системы

Автор: Сергей Бояр


Навигация в лесуРаботая заведующим отделом в одном из охотничье- рыболовных магазинов Санкт-Петербурга, мне часто приходится стоять за прилавком и консультировать покупателей. Очень многие продвинутые рыболовы и охотники не только не пользуются навигаторами, но даже не представляют, на каком принципе основана их работа. Все дело в том, что информации по навигаторам в печати очень мало, а та, что есть, носит, в основном, рекламный характер. Имея большой опыт общения с навигаторами, я попытаюсь наиболее доходчиво, не очень вдаваясь в сложные технические подробности, рассказать об их возможностях, наиболее популярных моделях, применении и системе GPS в целом.

Изобретение спутниковых систем навигации по своей значимости можно сравнить с изобретением мобильной связи, спутниковых телевидения и телефонии. Человек, который хоть один раз в жизни оказывался в незнакомой местности вдали от дорог и других ориентиров, по достоинству оценит это величайшее изобретение 20 века.

Сегодня GPS-навигация становится чрезвычайно популярной среди любителей пешего, горного, водного и лыжного туризма, охотников и рыболовов, велосипедистов и многих других любителей активного отдыха. Тому, кому нужно знать, где он находится, откуда пришел, как ему добраться до нужного места, с какой скоростью он движется и когда доберется до цели — можно посоветовать воспользоваться преимуществами, предоставляемыми GPS.

Принцип работы. Мифы и реальность

Навигация, в современном своем виде, основана на таких дисциплинах, как астрономия, картография, геодезия. Работа штурмана требует множества специальных знаний, навыков работы с навигационными приборами, картами, справочниками. Недаром на судне штурман является вторым человеком после капитана. Ошибки штурмана нередко приводят к трагическим последствиям.

Спутники GPSОсновные задачи, решаемые навигацией — выбор безопасного и кратчайшего пути, определение места, скорости и направления движения, оценка точности этих определений. Со всеми этими задачами с легкостью справится грамотный пользователь спутникового навигатора, не обремененный тем огромным объемом знаний, необходимых профессиональному штурману в его работе.

Система GPS (Global Positioning System — всемирная система определения координат) является наиболее ярким примером конверсии, и была разработана по заказу Министерства обороны США в конце семидесятых годов 20-го столетия. В восьмидесятых годах систему GPS (официальное название — NAVSTAR — NAVigation System with Timing And Ranging — навигационная система определения времени и дальности) открыли для гражданского использования.

Система GPS работает при любых погодных условиях по всему миру 24 часа в сутки. С ее помощью можно с высокой степенью точности определять координаты и скорость подвижных объектов. За пользование услугами системы GPS не взимается ни абонентская плата, ни плата за подключение. Все, что нужно для пользования системой GPS — это приобрести GPS-приемник (спутниковый навигатор).

Система состоит из 24 спутников (на самом деле спутников больше, но некоторые из них находятся в резерве), вращающихся по 6 орбитам на высоте около 20 км с периодом обращения 12 часов, нескольких наземных станций слежения, систем связи и центрального пункта управления. Наклон орбит к земному экватору — 55 град., угол между плоскостями орбит — 60 град.

Каждый спутник весит меньше 1 т и имеет размер около 5 м (с раскрытыми солнечными батареями). Мощность радиопередатчика — не более 50 ватт. Спутники рассчитаны на работу примерно в течение 10 лет. Новые спутники изготавливаются и запускаются на орбиту по мере необходимости. Спутники GPS способны передвигаться по орбитам, заполняя бреши в системе (если один из них вышел из строя). Важным элементом спутника являются атомные часы, рубидиевые и цезиевые, по четыре на каждом.

Спутник GPSОрбиты спутников располагаются примерно между 60 градусами северной и южной широты. Этим обеспечивается устойчивый прием сигнала от нескольких спутников повсеместно в любое время. «Увидеть» спутники можно даже на полюсах, правда, они не будут пролетать прямо над головой.

Наземная часть Системы GPS состоит из 4 станций слежения, расположенных на тропических островах. Они отслеживают видимые спутники и передают данные на Главную станцию управления и контроля на авиабазе в Колорадо-Спрингс для обработки на сложных компьютерных программных моделях. Эти наборы данных называются эфемеридами. Через наземные станции данные передаются обратно на спутники, а затем спутник передает их приемникам GPS.

Определение местоположения GPS-приемника основано на измерении задержки прохождения радиосигнала от нескольких спутников и вычисления на основе этих измерений географических координат и высоты над уровнем моря.

Сигнал каждого спутника содержит псевдослучайный код (PRN — Pseudo-Random Number code), эфемериды (ephimeris) и альманах (almanach).

Период повторения кода очень велик, а каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.

Автомобильный GPS навигаторОдной из основных технических сложностей описанного выше метода является синхронизация часов на спутнике и в приемнике. Даже мизерная, по обычным меркам, погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы. Понятно, что устанавливать подобные часы в каждый приемник невозможно. Поэтому для коррекции ошибок в определении координат из-за погрешностей встроенных в приемник часов используется некоторая избыточность в данных, необходимых для однозначной привязки к местности.

Псевдослучайный код служит также для идентификации передающего спутника. Все спутники пронумерованы от 1 до 32, и этот номер показывается на экране GPS-приемника во время его работы. Количество номеров больше, чем число спутников. Это облегчает обслуживание GPS-сети: новый спутник может быть запущен, проверен и введен в эксплуатацию еще до того, как старый выйдет из строя. Такому спутнику просто будет присвоен новый номер (от 1 до 32).

Данные эфемерид, постоянно передаваемые каждым спутником, содержат важную информацию: точные параметры орбиты, текущую дату и точное время, прогноз задержки распространения радиосигнала в ионосфере (скорость света меняется при прохождении разных слоев атмосферы), а также сведения о работоспособности спутника.

Данные альманаха содержат служебную информацию о том, где в течение дня должны находиться все GPS-спутники и их состояние (рабочее или нерабочее).

Ваш GPS-приемник получает сообщение от спутника и запоминает эфемериды и данные альманаха для дальнейшего использования. Эта же информация используется для установки или коррекции часов приемника.

Для определения своего местоположения GPS-приемник сравнивает время отправки сигнала со спутника со временем его получения на Земле. Эта разница во времени говорит приемнику о расстоянии до конкретного спутника.

Карта водоема с глубинамиОсновой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным, (эти данные содержатся в принятом со спутника альманахе). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами используется для триангуляции.

Если известно расстояние X1 до одного спутника, то координаты приемника определить нельзя (он может находиться в любой точке сферы радиусом X1, описанной вокруг спутника). Пусть известна удаленность X2 приемника от второго спутника. В этом случае определение координат также невозможно — объект находится где-то на окружности, которая является пересечением двух сфер с радиусами X1 и X2. Расстояние X3 до третьего спутника сокращает неопределенность в координатах до двух точек. Этого уже достаточно для однозначного определения координат — дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близи от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной навигации достаточно знать три расстояния от приемника до трех спутников. Однако, в жизни все не так просто. Приведенные выше рассуждения были сделаны для случая, когда расстояния от точки наблюдения до спутников известны с абсолютной точностью. Разумеется, как бы ни изощрялись инженеры, некоторая погрешность всегда имеет место (хотя бы из — за неточной синхронизации часов приемника и спутника, зависимости скорости света от состояния атмосферы и т. п.). Поэтому для определения трехмерных координат приемника привлекаются не три, а минимум четыре спутника. Получив сигнал от четырех (или больше) спутников, приемник ищет точку пересечения соответствующих сфер. Если такой точки нет, процессор приемника начинает методом последовательных приближений корректировать свои часы до тех пор, пока не добьется пересечения всех сфер в одной точке.

Следует отметить, что точность определения координат связана не только с прецизионным расчетом расстояния от приемника до спутников, но и с величиной погрешности задания местоположения самих спутников. Для контроля орбит и координат спутников существуют четыре наземных станции слежения, системы связи и центр управления, подконтрольные Министерству Обороны США. Станции слежения постоянно ведут наблюдения за всеми спутниками системы и передают данные об их орбитах в центр управления, где вычисляются уточнённые элементы траекторий и поправки спутниковых часов. Указанные параметры вносятся в альманах и передаются на спутники, а те, в свою очередь, отсылают эту информацию всем работающим приемникам. Кроме перечисленных, существует еще масса специальных систем, увеличивающих точность навигации. Отметим здесь, например, особые схемы обработки сигнала, которые снижают ошибки от интерференции (взаимодействия прямого спутникового сигнала с отраженным сигналом от зданий, сооружений и т. п.).

Каковы факторы, вносящие ошибку в определение местоположения, не позволяющие получить наилучшую точность?

Первым и наиболее существенным из них является т. н. «Режим Избирательного Доступа» (SA — Selective Availability). SA — это преднамеренное уменьшение точности гражданских GPS-навигаторов, осуществляемое Министерством обороны США. SA приводит к уменьшению точности максимум до 100 метров. Почему существует SA? Первоначально GPS была разработана и создана для военных целей. По мере ее внедрения стало ясно, что она может успешно применяться и для ряда гражданских задач. В начале 80-х годов в своей президентской речи Рональд Рейган заявил, что GPS будет доступна каждому — с тем только исключением, что наилучшая точность будет оставлена для военных. С этого времени начался регулярный запуск спутников с возможностью SA. Рациональное зерно в SA — не дать военному противнику или террористическим организациям использовать максимальную точность GPS. В 1996 г. Президент Клинтон подтвердил, что система, работающая на деньги американских налогоплательщиков, и в следующем столетии будет предоставлять свои услуги гражданским пользователям во всем мире.

В мае 2000г. правительство Соединенных Штатов выключило режим SA, что существенно повысило точность гражданских GPS-приемников. (Сегодня все существующие GPS-спутники имеют возможность и все-таки применяют на практике режим SA, правда, не в том виде, в каком он существовал до мая 2000 года.) Президент США сохраняет за собой право снижать точность сигналов GPS в случае угрозы национальной безопасности.

Другим фактором, влияющим на точность GPS, является геометрия спутников. Простыми словами, понятие «геометрия спутников» означает то, как они расположены друг относительно друга и GPS-приемника. Идеальной является такая геометрия спутников, когда углы между направлениями на них — наибольшие. Плохой считают такую геометрию, когда спутники располагаются на одной линии или близко к ней.

Компактный GPS навигаторЕсли, например, приемник «видит» четыре спутника и все четыре расположены в северном направлении, то спутниковая геометрия плохая — ошибка может доходить до 100-150 метров. Причем вплоть до того, что приемник вообще не сможет определить свое местоположение. Почему? Потому что все расстояния, измеренные до спутников, будут лежать в одном глобальном направлении. Это означает, что триангуляция будет плохой и что область пересечения построенных прямых будет довольно большой (т. е. область вероятного положения будет занимать значительное пространство и точно указать координаты невозможно). В этом случае, даже если приемник выдает некоторые значения координат, их точность не будет достаточно хороша.

Если же эти четыре спутника будут находиться в разных направлениях, то точность значительно возрастет. Предположим, что они расположены равномерно по сторонам горизонта — на севере, востоке, юге и западе. Тогда, очевидно, геометрия будет очень хорошей. Область, ограниченная пересекающимися прямыми, соединяющими спутники, будет невелика, что обеспечивает уверенность в правильности рассчитанного местоположения. В этом случае точность может быть наивысшей.

Геометрия спутников становится особенно важной при использовании GPS-приемника в автомобиле, среди высоких зданий, в горах или в глубоких ущельях. Если сигналы от некоторых спутников оказываются экранированными, то точность определения местоположения будет зависеть от оставшихся «видимыми» спутников (а от их количества — возможность провести расчеты вообще). Чем большая часть неба заслонена искусственными или естественными предметами, тем более сложно определить положение. Хорошие модели GPS-приемников показывают, и сколько спутников находится в зоне видимости, и где они расположены на небе (направление и высоту над горизонтом), чтобы можно было определить, не экранируется ли сигнал от данного спутника.

Другим источником ошибок является переотражение спутникового сигнала от различных объектов. (В быту мы встречаемся с эти явлением в виде появления раздвоенного изображения на экране телевизора.) В случае GPS переотражение возникает при взаимодействии сигнала со зданиями или рельефом местности до того, как он достигнет приемной антенны. Такому сигналу требуется больше времени для достижения приемника, чем прямому. Увеличение времени заставляет приемник считать, что спутник находится на большем расстоянии, чем на самом деле, и это увеличивает ошибку при определении положения. Ошибки переотражения гораздо меньше 100 м, поскольку только близко расположенные предметы способны дать достаточно сильное эхо.

Существуют ли другие источники погрешностей?

Конечно. Например, задержка прохождения сигнала из-за различных атмосферных явлений, так называемых ионосферных и тропосферных задержек. В космосе радиосигналы распространяются со скоростью света, однако при попадании их в ионизированные слои атмосферы Земли они существенно замедляются, причем неравномерно. Для сигналов от разных спутников задержка времени различна. Ошибки распространения радиоволн зависят от состояния атмосферы и высоты спутника над горизонтом: чем ниже спутник, тем больший путь проходит его сигнал через атмосферу и тем больше искажение. Атмосферные помехи зависят от времени суток: после захода солнца плотность ионосферы и ее влияние на радиосигналы уменьшается (явление, хорошо знакомое радистам-коротковолновикам).

GPS yавигация на водоемеСистема GPS использует встроенную модель, которая определяет среднюю величину задержки для частичной коррекции ошибок этого типа.

Бывают также ошибки хода часов приемника. Встроенные часы GPS-приемника уступают в точности атомным часам, находящимся на борту спутников. Это может стать причиной небольших ошибок в определении времени прохождения сигнала. Однако GPS-приемники и вся система в целом спроектированы так, чтобы, по возможности, компенсировать эти ошибки и, надо сказать, что решается эта задача вполне успешно.

Существуют также системные, так называемые орбитальные и эфемероидные ошибки, связанные с неточным определением координат спутников наземными станциями слежения.

После отмены описанного выше режима селективного доступа гражданские GPS-приемники «привязываются к местности» с погрешностью 3-5 метров (высота определяется с точностью около 10 метров). Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников, (большинство современных аппаратов имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников).

Качественно уменьшить ошибку (до нескольких сантиметров) в измерении координат позволяет режим дифференциальной коррекции (DGPS — Differential GPS). Дифференциальный режим состоит в использовании двух приемников — один неподвижно находится в точке с известными координатами и называется «базовым», а второй, как и раньше, является мобильным. Данные, полученные базовым приемником, используются для коррекции информации, собранной передвижным аппаратом.

В следующей статье я расскажу вам об основных функциях спутниковых навигаторов, рассмотрю наиболее популярные модели, покажу на примерах различные варианты их применения.

Поделиться
с друзьями:
Оцените материал?

(Нет голосов)